organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-[3,5-Dichloro-4-(1,1,2,2-tetrafluoroethoxy)phenyl]-2,6-difluorobenzamide

Ying Liang,* San Wei and Zi-Wen Yang

Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China Correspondence e-mail: ly.liang8@gmail.com

Received 21 July 2010; accepted 26 July 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.084; wR factor = 0.253; data-to-parameter ratio = 11.5.

In the title compound, $C_{15}H_7Cl_2F_6NO_2$, the conformation of the N-H bond in the amide segment is *anti* to the C=O bond and the dihedral angle between the two benzene rings is 78.6 (3)°. The terminal -CHF₂ group is disordered over two orientations in a 0.67:0.33 ratio. In the crystal, the molecules are linked by N-H···O hydrogen bonds, generating C(4) chains propagating in [100].

Related literature

For background to the biological properties of related compounds, see: Liu, Li & Li (2004); Liu, Li & Zhong (2004); Shiga *et al.* (2003). For a related structure, see: Gowda *et al.* (2010). For reference structural data, see: Allen *et al.* (1987).

a = 9.426 (2) Å

b = 15.568 (4) Å

c = 22.601 (6) Å

Experimental

Crystal data $C_{15}H_7Cl_2F_6NO_2$ $M_r = 418.12$ Orthorhombic, Pbca

```
V = 3316.7 (15) \text{ Å}^3Z = 8Mo K\alpha radiation
```

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.929, T_{\rm max} = 0.955$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.253$ S = 1.062916 reflections 254 parameters

Table 1Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N1-H1\cdots O1^i$ 0.86
 2.00
 2.861 (5)
 174

 Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$ $D - H \cdots A$ $D - H \cdots A$

 $\mu = 0.47 \text{ mm}^{-1}$

 $0.16 \times 0.12 \times 0.10 \text{ mm}$

16415 measured reflections

2916 independent reflections

2111 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 298 K

 $R_{\rm int} = 0.075$

35 restraints

 $\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.41$ e Å⁻³

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the financial support of this work by the Foundation of Hubei Agricultural Scientific and Technological Innovation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5568).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, 01529-01530.

- Liu, C. L., Li, L. & Li, Z. M. (2004). Bioorg. Med. Chem. 12, 2825-2830.
- Liu, C. L., Li, Z. M. & Zhong, B. (2004). J. Fluorine Chem. 125, 1287-1290.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310-312.

supplementary materials

Acta Cryst. (2010). E66, o2156 [doi:10.1107/81600536810029612]

N-[3,5-Dichloro-4-(1,1,2,2-tetrafluoroethoxy)phenyl]-2,6-difluorobenzamide

Y. Liang, S. Wei and Z.-W. Yang

Comment

Amide derivatives showed diverse biological properties such as insecticidal (Liu, Li & Li, 2004), fungicidal (Liu, Li & Zhong, 2004) and acaricidal (Shiga *et al.*, 2003) activities. Commercialized compounds include benzamide (flutolanil, fluopicolide), nicotinamide (boscalid) and thiazole carboxamide (thifluzamide, ethaboxam). As a part of our study on the synthesis of new fluorine-containing compounds with possible biological activities, we report here the crystal structure of the title compound, (I)(Fig. 1).

In the molecule, all bond lengths and angles are normal (Allen *et al.*, 1987). The conformation of the N—H and the C=O bonds in the amide segment are anti to each other, which is similar to that observed in other amide compound (Gowda *et al.*, 2010). The dihedral angles between the two phenyl rings is 78.6°. The crystal structure is stabilized by intermolecular N—H···O hydrogen-bonds (Table 1).

Experimental

Triethylamine (6 mmol) was added dropwise to a stirred solution of 3,5-dichloro-4-(1,1,2,2-tetrafluoroethoxy) aniline (5 mmol) and 2,6-dichlorobenzoyl chloride (5 mmol) in dry dichloromethane (20 ml) at 275–277 K. The mixture was stirred at 283–288 K for 2 h, then washed with 0.5% hydrochloric acid solution, and a saturated aqueous solution of sodium hydrogen carbonate, dried and evaporated. The residue was recrystallized from dichloromethane, giving colourless blocks of (I) after 3 weeks.

Refinement

All H-atoms bound to carbon were refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic 0.98 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH.

Figures

Stephinister, Ste

Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2. Crystal packing diagram of (I). Hydrogen bonds are shown as dashed lines.

N-[3,5-Dichloro-4-(1,1,2,2-tetrafluoroethoxy)phenyl]-2,6- difluorobenzamide

Crystal data

C ₁₅ H ₇ Cl ₂ F ₆ NO ₂	$D_{\rm x} = 1.675 \ {\rm Mg \ m}^{-3}$
$M_r = 418.12$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, Pbca	Cell parameters from 3100 reflections
a = 9.426 (2) Å	$\theta = 2.7 - 20.5^{\circ}$
b = 15.568 (4) Å	$\mu = 0.47 \text{ mm}^{-1}$
c = 22.601 (6) Å	T = 298 K
$V = 3316.7 (15) \text{ Å}^3$	Block, colorless
Z = 8	$0.16 \times 0.12 \times 0.10 \text{ mm}$
F(000) = 1664	

Data collection

Bruker SMART APEX CCD diffractometer	2916 independent reflections
Radiation source: fine-focus sealed tube	2111 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.075$
φ and ω scans	$\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 2.6^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -11 \rightarrow 11$
$T_{\min} = 0.929, \ T_{\max} = 0.955$	$k = -16 \rightarrow 18$
16415 measured reflections	$l = -26 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.084$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.253$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.1378P)^2 + 2.4511P]$ where $P = (F_o^2 + 2F_c^2)/3$
2916 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
254 parameters	$\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$
35 restraints	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.2885 (5)	0.6858 (3)	0.5451 (2)	0.0619 (12)	
C2	0.2068 (8)	0.6985 (5)	0.5949 (3)	0.096 (2)	
C3	0.1779 (10)	0.6367 (8)	0.6345 (4)	0.143 (4)	
H3	0.1250	0.6481	0.6684	0.172*	
C4	0.2302 (11)	0.5553 (7)	0.6230 (4)	0.132 (4)	
H4	0.2102	0.5110	0.6493	0.158*	
C5	0.3106 (8)	0.5382 (4)	0.5739 (4)	0.103 (2)	
Н5	0.3445	0.4831	0.5665	0.124*	
C6	0.3391 (6)	0.6032 (4)	0.5365 (3)	0.0741 (15)	
C7	0.3282 (4)	0.7581 (3)	0.5045 (2)	0.0564 (11)	
C8	0.2294 (4)	0.8573 (3)	0.4316 (2)	0.0559 (11)	
С9	0.1389 (5)	0.8554 (3)	0.3827 (2)	0.0613 (12)	
Н9	0.0775	0.8093	0.3773	0.074*	
C10	0.1405 (5)	0.9217 (3)	0.3424 (2)	0.0636 (12)	
C11	0.2300 (6)	0.9916 (3)	0.3497 (2)	0.0672 (13)	
C12	0.3205 (5)	0.9913 (3)	0.3980 (3)	0.0701 (14)	
C13	0.3201 (5)	0.9259 (3)	0.4389 (3)	0.0683 (14)	
H13	0.3807	0.9280	0.4714	0.082*	
C14	0.1507 (7)	1.1246 (4)	0.3126 (3)	0.0855 (17)	
C15	0.1869 (11)	1.1839 (5)	0.2601 (4)	0.146 (3)	
H15	0.2893	1.1945	0.2585	0.175*	0.67
H15'	0.2111	1.1413	0.2298	0.175*	0.33
Cl1	0.43376 (19)	1.07768 (10)	0.40998 (10)	0.1141 (8)	
Cl2	0.0311 (2)	0.91643 (11)	0.28089 (7)	0.1026 (7)	
F1	0.1596 (6)	0.7801 (4)	0.6046 (2)	0.1471 (19)	
F2	0.4199 (4)	0.5898 (2)	0.48811 (18)	0.1020 (12)	
F3	0.0163 (5)	1.1038 (3)	0.3168 (3)	0.1456 (19)	
F4	0.1720 (6)	1.1679 (3)	0.3624 (2)	0.1382 (18)	
N1	0.2209 (4)	0.7900 (2)	0.47228 (18)	0.0605 (10)	
H1	0.1390	0.7667	0.4771	0.073*	
01	0.4498 (3)	0.7837 (2)	0.5020 (2)	0.0816 (11)	
02	0.2375 (4)	1.0559 (2)	0.30668 (17)	0.0788 (11)	
F6	0.1153 (11)	1.2577 (5)	0.2708 (4)	0.163 (3)	0.67
F5	0.1452 (10)	1.1438 (6)	0.2108 (4)	0.161 (3)	0.67
F5'	0.3088 (15)	1.2237 (11)	0.2688 (8)	0.157 (6)	0.33
F6'	0.0536 (18)	1.2059 (19)	0.2406 (12)	0.219 (10)	0.33

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.051 (3)	0.069 (3)	0.066 (3)	-0.002 (2)	-0.004 (2)	0.006 (2)
C2	0.095 (4)	0.118 (6)	0.073 (4)	0.010 (4)	0.008 (3)	0.010 (4)
C3	0.139 (7)	0.207 (11)	0.084 (5)	-0.018 (8)	0.013 (5)	0.049 (7)
C4	0.142 (8)	0.139 (7)	0.115 (7)	-0.049 (6)	-0.032 (6)	0.069 (6)
C5	0.122 (6)	0.076 (4)	0.112 (6)	-0.022 (4)	-0.030 (5)	0.038 (4)
C6	0.075 (3)	0.065 (3)	0.082 (4)	-0.007 (3)	-0.013 (3)	0.011 (3)
C7	0.048 (2)	0.048 (2)	0.074 (3)	0.006 (2)	0.002 (2)	-0.003 (2)
C8	0.043 (2)	0.048 (2)	0.076 (3)	0.0048 (18)	0.007 (2)	0.000(2)
C9	0.063 (3)	0.051 (3)	0.069 (3)	-0.005 (2)	0.010(2)	-0.008 (2)
C10	0.072 (3)	0.061 (3)	0.058 (3)	0.003 (2)	0.009(2)	-0.012 (2)
C11	0.071 (3)	0.053 (3)	0.077 (3)	0.007 (2)	0.015 (3)	-0.001 (2)
C12	0.058 (3)	0.046 (3)	0.105 (4)	0.002 (2)	0.001 (3)	0.008 (2)
C13	0.059 (3)	0.046 (3)	0.100 (4)	0.006 (2)	-0.015 (3)	0.000(2)
C14	0.105 (5)	0.058 (3)	0.093 (4)	0.006 (3)	-0.008 (3)	0.002 (3)
C15	0.155 (5)	0.127 (5)	0.154 (5)	0.027 (4)	-0.017 (4)	0.016 (4)
Cl1	0.0934 (12)	0.0600 (9)	0.189 (2)	-0.0223 (7)	-0.0398 (12)	0.0268 (10)
Cl2	0.1460 (16)	0.0985 (12)	0.0632 (9)	-0.0185 (10)	-0.0191 (9)	-0.0054 (7)
F1	0.174 (5)	0.159 (4)	0.109 (3)	0.050 (4)	0.041 (3)	-0.021 (3)
F2	0.123 (3)	0.067 (2)	0.116 (3)	0.0233 (19)	0.022 (2)	0.0026 (18)
F3	0.097 (3)	0.097 (3)	0.243 (6)	0.021 (2)	0.027 (3)	0.002 (3)
F4	0.186 (5)	0.104 (3)	0.125 (3)	0.062 (3)	-0.023 (3)	-0.016 (3)
N1	0.042 (2)	0.055 (2)	0.084 (3)	-0.0037 (16)	0.0022 (18)	0.0098 (19)
01	0.0474 (19)	0.064 (2)	0.134 (3)	-0.0028 (16)	-0.014 (2)	0.020(2)
O2	0.091 (3)	0.059 (2)	0.086 (3)	0.0114 (18)	0.022 (2)	0.0166 (18)
F6	0.179 (5)	0.136 (4)	0.174 (5)	0.032 (4)	-0.008 (4)	0.038 (4)
F5	0.189 (5)	0.165 (5)	0.129 (4)	0.017 (4)	-0.020 (4)	0.012 (4)
F5'	0.157 (7)	0.154 (7)	0.160 (7)	-0.004 (5)	0.007 (5)	0.006 (5)
F6'	0.217 (11)	0.221 (11)	0.218 (11)	0.004 (5)	-0.006 (5)	0.005 (5)

Geometric parameters (Å, °)

C1—C2	1.377 (8)	C10-Cl2	1.733 (5)
C1—C6	1.385 (7)	C11—C12	1.385 (7)
C1—C7	1.500 (7)	C11—O2	1.398 (6)
C2—C3	1.344 (11)	C12—C13	1.375 (7)
C2—F1	1.363 (8)	C12—Cl1	1.738 (5)
C3—C4	1.384 (13)	C13—H13	0.9300
С3—Н3	0.9300	C14—F3	1.311 (8)
C4—C5	1.370 (13)	C14—F4	1.328 (7)
C4—H4	0.9300	C14—O2	1.352 (7)
C5—C6	1.346 (8)	C14—C15	1.540 (8)
С5—Н5	0.9300	C15—F5'	1.321 (10)
C6—F2	1.350 (7)	C15—F5	1.335 (8)
C7—O1	1.215 (5)	C15—F6	1.355 (8)
C7—N1	1.341 (6)	C15—F6'	1.375 (10)

C8—C13	1.379 (6)	C15—H15	0.9800
C8—N1	1.395 (6)	C15—H15'	0.9791
C8—C9	1.398 (7)	N1—H1	0.8600
C9—C10	1.375 (7)	F5—H15'	0.7554
С9—Н9	0.9300	F5'—H15	0.5415
C10—C11	1.388 (7)		
C2—C1—C6	116.1 (5)	C12—C13—C8	119.7 (5)
C2—C1—C7	122.1 (5)	C12—C13—H13	120.2
C6—C1—C7	121.6 (5)	C8—C13—H13	120.2
C3—C2—F1	119.6 (8)	F3—C14—F4	102.1 (6)
C3—C2—C1	123.7 (8)	F3—C14—O2	113.3 (5)
F1—C2—C1	116.7 (6)	F4—C14—O2	113.2 (5)
C2—C3—C4	117.3 (9)	F3—C14—C15	114.7 (6)
С2—С3—Н3	121.4	F4—C14—C15	108.4 (6)
С4—С3—Н3	121.4	O2—C14—C15	105.3 (6)
C5-C4-C3	121.8 (7)	F5'-C15-F5	126.8 (12)
C5—C4—H4	119.1	F5'-C15-F6	90.5 (10)
C3—C4—H4	119.1	F5-C15-F6	113 5 (9)
C_{6}	118.2 (8)	F5'-C15-F6'	136.5 (16)
C6_C5_H5	120.9	F5	65 2 (13)
C4-C5-H5	120.9	F6-C15-F6'	52.4(12)
C_{5} C_{6} E_{7}	120.3 (6)	F5'-C15-C14	111 1 (10)
C5-C6-C1	120.3(0) 122.8(7)	$F_{5} = C_{15} = C_{14}$	107.3(8)
E_{3} C_{6} C_{1}	122.8(7)	F6 C15 C14	107.3(8) 105.1(7)
$12 - c_0 - c_1$	110.0(4)	F6' C15 C14	103.1(7) 101.2(12)
OI = C7 = OI	124.4(4)	F0 - C15 - C14	101.2(13)
01	120.0 (4)	F5 C15 H15	21.5
NI - C / - CI	115.0 (4)	F3-C15-H15	109.8
C13—C8—N1	122.6 (5)	F6-C15-H15	110.7
013-08-09	119.3 (4)	F6'	147.7
NI-C8-C9	118.1 (4)	С14—С15—Н15	110.3
C10—C9—C8	120.1 (4)	F5'—C15—H15'	102.6
C10—C9—H9	120.0	F5—C15—H15'	33.9
С8—С9—Н9	120.0	F6—C15—H15'	144.6
C9—C10—C11	121.1 (5)	F6'—C15—H15'	99.0
C9—C10—Cl2	119.3 (4)	C14—C15—H15'	100.6
C11—C10—Cl2	119.6 (4)	H15—C15—H15'	82.0
C12—C11—C10	117.7 (5)	C7—N1—C8	126.3 (4)
C12—C11—O2	121.3 (5)	C7—N1—H1	116.9
C10—C11—O2	120.6 (5)	C8—N1—H1	116.9
C13—C12—C11	122.1 (5)	C14—O2—C11	117.9 (4)
C13—C12—C11	118.0 (4)	C15—F5—H15'	46.3
C11—C12—Cl1	119.9 (4)	C15—F5'—H15	41.2
C6—C1—C2—C3	1.5 (10)	C10-C11-C12-Cl1	-179.3 (4)
C7—C1—C2—C3	-174.9 (7)	O2—C11—C12—Cl1	6.7 (7)
C6—C1—C2—F1	178.3 (5)	C11—C12—C13—C8	1.4 (8)
C7—C1—C2—F1	1.9 (9)	Cl1—C12—C13—C8	178.6 (4)
F1—C2—C3—C4	-179.0 (8)	N1—C8—C13—C12	-178.3 (5)
C1—C2—C3—C4	-2.3 (13)	C9—C8—C13—C12	-0.1 (7)

supplementary materials

C2—C3—C4—C5	1.3 (14)	F3—C14—C15—F5'	159.9 (10)
C3—C4—C5—C6	0.4 (13)	F4—C14—C15—F5'	46.6 (12)
C4—C5—C6—F2	178.8 (6)	O2-C14-C15-F5'	-74.8 (11)
C4—C5—C6—C1	-1.2 (10)	F3-C14-C15-F5	-57.7 (10)
C2—C1—C6—C5	0.4 (8)	F4-C14-C15-F5	-171.1 (7)
C7—C1—C6—C5	176.8 (5)	O2-C14-C15-F5	67.5 (9)
C2-C1-C6-F2	-179.7 (5)	F3-C14-C15-F6	63.3 (10)
C7—C1—C6—F2	-3.3 (7)	F4-C14-C15-F6	-50.0 (10)
C2-C1-C7-O1	109.9 (6)	O2-C14-C15-F6	-171.4 (8)
C6—C1—C7—O1	-66.3 (7)	F3—C14—C15—F6'	9.5 (16)
C2C1C7N1	-70.5 (7)	F4-C14-C15-F6'	-103.8 (15)
C6—C1—C7—N1	113.3 (5)	O2—C14—C15—F6'	134.8 (15)
C13—C8—C9—C10	-0.2 (7)	O1—C7—N1—C8	-0.8 (8)
N1—C8—C9—C10	178.0 (4)	C1C7	179.6 (4)
C8—C9—C10—C11	-0.6 (7)	C13—C8—N1—C7	-33.8 (7)
C8—C9—C10—Cl2	178.1 (4)	C9—C8—N1—C7	148.1 (5)
C9-C10-C11-C12	1.8 (7)	F3-C14-O2-C11	-55.4 (7)
Cl2—C10—C11—C12	-177.0 (4)	F4-C14-O2-C11	60.3 (7)
C9—C10—C11—O2	175.9 (4)	C15-C14-O2-C11	178.5 (6)
Cl2—C10—C11—O2	-2.9 (6)	C12—C11—O2—C14	-94.2 (6)
C10-C11-C12-C13	-2.2 (8)	C10-C11-O2-C14	92.0 (6)
O2-C11-C12-C13	-176.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.86	2.00	2.861 (5)	174
Symmetry codes: (i) $x-1/2, -y+3/2, -z+1$.				

sup-6

Fig. 1

